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Fig. 1: BIE-WOS for local data on patch S 
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I. Objective: We propose a fundamentally new approach of extreme-scale solvers for solving Poisson or 

reduced Helmholtz equations in complex 3-D geometries, with applications in many scientific and 

engineering problems including CFD, bio-electrostatics, and microchip design, etc.   

 

The proposed approach is based on combining a deterministic (local) boundary integral equation and the 

random Brownian walk probabilistic Feynman-Kac representation of elliptic PDEs solutions. This 

hybridization allows us to produce a scalable parallel algorithm where the bulk of the computation has no 

need for cross-processor communication, thus making the approach an ideal candidate for extreme-scale 

parallel and fault-resilient algorithm for up to millions of CPUs in the peta-flop/s computer systems.  

 
The parallel algorithm to be developed will have the following salient features: 

 Non-iterative in construction and no need to solve any global linear system. 

 Stochastic in nature based on Feynmann-Kac formula for elliptic PDEs. 

 Massive parallelism suitable to large number of processors for exascale computing due to the 

random walk and local integral equation components of the algorithm. 

 No need for traditional finite element type surface or volume meshes. 

 Applicable to complex 3-D geometry with accurate treatment of domain boundaries. 

 Resilience to random faults of processors in the multi-core computing architectures. 

 

II. Key idea:  BIE-WOS, boundary integral equation (BIE) and walk on spheres (WOS) for   

                        computing DtN or NtD mapping for a general domain  

 

The BIE-WOS method aims to find the DtN or NtD mapping of 

the PDE solution over boundary    in a parallel manner by 

combining local integral equation and the random walk methods.   

 

As shown in Fig.1, on a local patch      we superimpose 

a “half” ball and the part of the ball outside the surface   is 

denoted by    with a boundary  . Let        be a Green’s 

function of the ball which vanishes on its boundary (thus 

also on   being part of the sphere surface). Then, we have 

 

(1) 

 

Next, by taking derivative of (1), we obtain the following hyper-singular boundary integral equation   

    

(2)   

 

 

where the potential solution      is required on the hemisphere boundary  , and both Dirichlet and 

Neumann data on the boundary patch   are needed (one of them is given by PDE boundary conditions).  
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The BIE-WOS method consists of the following two steps: 

 

Step 1: (WOS) random walks         based on walk on spheres (WOS) and the Feynman-Kac formula 

of Laplace solutions with a given Dirichlet data   (Poisson equation can be treated similarly) 

 

(3)                    
  ,       is the first hit time, 

 

give the solution         at 2-D Gauss points       , allowing the integral over   by a quadrature 

(4)   
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Step 2: (BIE) with the integral over   found in (4), equation (2) implies that the Neumann data on the 

surface S will satisfy a second kind integral equation,  

 

 (5)                        

 

to be solved by a Nystr  m collocation method for     . Due to the small size of the selected patch  , 

the resulting small linear system can be inverted directly by Gauss elimination. 

 

Alternatively, if the Neumann data is given on the boundary  , then the Dirichlet data      on   is 

desired, (1) can be used as a second kind of integral equation 

 

 (6) 
 

Intrinsic Parallelism:  the Neumann or Dirichlet data on each patch S on the boundary can be found from (5) 

or (6) without data exchanges from other patches, thus BIE-WOS can be scaled up for large number of CPUs. 

Once both the Neumann and Dirichlet data on the whole boundary are found, the solution in whole space 

can be obtained by the simple integral representation (done in one FMM implementation), 

 

(7)                                                  
     

   
    

       

   
       

    
 

 
III. Preliminary Results: 

                            
      Fig 2 (left) a patch S for Neumann data, (middle) mesh on the patch, (right) error of BieWos  
 

The BIE-WOS is used to find the Neumann data [1] on a patch S (Fig. 2(left) ) where     Browian paths 

       are used in (3) for finding the solution         on   for 30x30 Gauss points       in (4), Fig 2 

(right) shows the relative error for the Neumann data on the patch S at      with the BIE-WOS method. 

            
IV. References: 

[1] C.H. Yan, W. Cai, X. Zeng , A parallel method for solving Poisson equations with Dirichlet data using 

local boundary integral equations and random walks, submitted in revision to SIAM J. Scientific 

computing, , 1/2013. http://math2.uncc.edu/~wcai/BieWos.pdf  

1
( ) ( ) ( ), ,
2

u
I K x f x x S

n


  



1
( ) ( ), .

2
I K u x h x x S

 
   

 

http://math2.uncc.edu/~wcai/BieWos.pdf

